skip to main content


Search for: All records

Creators/Authors contains: "Bange, Hermann W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Abstract. Oxygen-deficient zones (ODZs) are major sites of net naturalnitrous oxide (N2O) production and emissions. In order to understandchanges in the magnitude of N2O production in response to globalchange, knowledge on the individual contributions of the major microbialpathways (nitrification and denitrification) to N2O production andtheir regulation is needed. In the ODZ in the coastal area off Peru, thesensitivity of N2O production to oxygen and organic matter wasinvestigated using 15N tracer experiments in combination with quantitative PCR (qPCR) andmicroarray analysis of total and active functional genes targeting archaeal amoAand nirS as marker genes for nitrification and denitrification, respectively.Denitrification was responsible for the highest N2O production with amean of 8.7 nmol L−1 d−1 but up to 118±27.8 nmol L−1 d−1 just below the oxic–anoxic interface. The highest N2O productionfrom ammonium oxidation (AO) of 0.16±0.003 nmol L−1 d−1occurred in the upper oxycline at O2 concentrations of 10–30 µmol L−1 which coincided with the highest archaeal amoA transcripts/genes.Hybrid N2O formation (i.e., N2O with one N atom from NH4+and the other from other substrates such as NO2-) was the dominantspecies, comprising 70 %–85 % of total produced N2O fromNH4+, regardless of the ammonium oxidation rate or O2concentrations. Oxygen responses of N2O production varied withsubstrate, but production and yields were generally highest below 10 µmol L−1 O2. Particulate organic matter additions increasedN2O production by denitrification up to 5-fold, suggesting increasedN2O production during times of high particulate organic matter export.High N2O yields of 2.1 % from AO were measured, but the overallcontribution by AO to N2O production was still an order of magnitudelower than that of denitrification. Hence, these findings show thatdenitrification is the most important N2O production process in low-oxygen conditions fueled by organic carbon supply, which implies a positivefeedback of the total oceanic N2O sources in response to increasingoceanic deoxygenation. 
    more » « less
  3. null (Ed.)
    Abstract. In the current era of rapid climate change, accuratecharacterization of climate-relevant gas dynamics – namely production,consumption, and net emissions – is required for all biomes, especially thoseecosystems most susceptible to the impact of change. Marine environmentsinclude regions that act as net sources or sinks for numerous climate-activetrace gases including methane (CH4) and nitrous oxide (N2O). Thetemporal and spatial distributions of CH4 and N2O are controlledby the interaction of complex biogeochemical and physical processes. Toevaluate and quantify how these mechanisms affect marine CH4 andN2O cycling requires a combination of traditional scientificdisciplines including oceanography, microbiology, and numerical modeling.Fundamental to these efforts is ensuring that the datasets produced byindependent scientists are comparable and interoperable. Equally critical istransparent communication within the research community about the technicalimprovements required to increase our collective understanding of marineCH4 and N2O. A workshop sponsored by Ocean Carbon and Biogeochemistry (OCB)was organized to enhance dialogue and collaborations pertaining tomarine CH4 and N2O. Here, we summarize the outcomes from theworkshop to describe the challenges and opportunities for near-futureCH4 and N2O research in the marine environment. 
    more » « less
  4. Abstract. Large-scale climatic forcing is impactingoceanic biogeochemical cycles and is expected to influence the water-columndistribution of trace gases, including methane and nitrous oxide. Our abilityas a scientific community to evaluate changes in the water-column inventoriesof methane and nitrous oxide depends largely on our capacity to obtain robustand accurate concentration measurements that can be validated acrossdifferent laboratory groups. This study represents the first formalinternational intercomparison of oceanic methane and nitrous oxidemeasurements whereby participating laboratories received batches of seawatersamples from the subtropical Pacific Ocean and the Baltic Sea. Additionally,compressed gas standards from the same calibration scale were distributed tothe majority of participating laboratories to improve the analytical accuracyof the gas measurements. The computations used by each laboratory to derivethe dissolved gas concentrations were also evaluated for inconsistencies(e.g., pressure and temperature corrections, solubility constants). Theresults from the intercomparison and intercalibration provided invaluableinsights into methane and nitrous oxide measurements. It was observed thatanalyses of seawater samples with the lowest concentrations of methane andnitrous oxide had the lowest precisions. In comparison, while the analyticalprecision for samples with the highest concentrations of trace gases wasbetter, the variability between the different laboratories was higher:36% for methane and 27% for nitrous oxide. In addition, thecomparison of different batches of seawater samples with methane and nitrousoxide concentrations that ranged over an order of magnitude revealed theramifications of different calibration procedures for each trace gas.Finally, this study builds upon the intercomparison results to developrecommendations for improving oceanic methane and nitrous oxide measurements,with the aim of precluding future analytical discrepancies betweenlaboratories.

     
    more » « less